Magnetism



Article Magnetism

  • Magnetic forces
  • Magnetic properties of matter
    • Ferromagnetism

Together, magnetism and electricity can produce energy of motion. Terms in this set (15) magnet. Any material that attracts iron or materials containing iron. The two ends of a magnet; the contain the strongest magnetic force. (North & South) repel. Magnetism (磁 (じ) 力 (りょく), Jiryoku?) was the Quirk used by Kenji Hikiishi. 1 Description 1.1 Weaknesses 2 Usage 3 Named Super Moves 4 References 5 Site Navigation Magnetism allows Kenji to magnetize people around her, up to a 4.5-meter radius of herself at will. She can magnetize a person's entire body or specific portions. Once magnetized, the targets either attract or repel each. Learn More All About Magnetism and How It Works Around magnet poles is an area known as a magnetic field. In the magnetic field, other objects can be drawn to the magnet. Watch this amazing video all about magnetism that will blow your mind! Terms in this set (29) True or False: the strength of an electromagnet can be increased by reducing the number of turns on the wire coil. Learn about Magnetism with Dr. Binocs.Hey kids, have you ever wondered how do magnets get attracted to each other? Magnet to teach.

Please select which sections you would like to print:
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Our editors will review what you’ve submitted and determine whether to revise the article.

Join Britannica's Publishing Partner Program and our community of experts to gain a global audience for your work! Frank Neville H. RobinsonSee All Contributors
Senior Research Officer, Clarendon Laboratory, University of Oxford; Fellow, St. Catherine's College, Oxford, 1962–92. Author of Noise and Fluctuations in Electronic Devices and Circuits and others.

Magnetism, phenomenon associated with magnetic fields, which arise from the motion of electric charges. This motion can take many forms. It can be an electric current in a conductor or charged particles moving through space, or it can be the motion of an electron in an atomicorbital. Magnetism is also associated with elementary particles, such as the electron, that have a property called spin.

Fundamentals

Basic to magnetism are magnetic fields and their effects on matter, as, for instance, the deflection of moving charges and torques on other magnetic objects. Evidence for the presence of a magnetic field is the magnetic force on charges moving in that field; the force is at right angles to both the field and the velocity of the charge. This force deflects the particles without changing their speed. The deflection can be observed in the torque on a compass needle that acts to align the needle with the magnetic field of Earth. The needle is a thin piece of iron that has been magnetized—i.e., a small bar magnet. One end of the magnet is called a north pole and the other end a south pole. The force between a north and a south pole is attractive, whereas the force between like poles is repulsive. The magnetic field is sometimes referred to as magnetic induction or magnetic flux density; it is always symbolized by B. Magnetic fields are measured in units of tesla (T). (Another unit of measure commonly used for B is the gauss, though it is no longer considered a standard unit. One gauss equals 10−4 tesla.)

Magnetism

A fundamental property of a magnetic field is that its flux through any closed surface vanishes. (A closed surface is one that completely surrounds a volume.) This is expressed mathematically by div B = 0 and can be understood physically in terms of the field lines representing B. These lines always close on themselves, so that if they enter a certain volume at some point, they must also leave that volume. In this respect, a magnetic field is quite different from an electric field. Electric field lines can begin and end on a charge, but no equivalent magnetic charge has been found in spite of many searches for so-called magnetic monopoles.

The most common source of magnetic fields is the electric current loop. It may be an electric current in a circular conductor or the motion of an orbiting electron in an atom. Associated with both these types of current loops is a magnetic dipole moment, the value of which is iA, the product of the current i and the area of the loop A. In addition, electrons, protons, and neutrons in atoms have a magnetic dipole moment associated with their intrinsic spin; such magnetic dipole moments represent another important source of magnetic fields. A particle with a magnetic dipole moment is often referred to as a magnetic dipole. (A magnetic dipole may be thought of as a tiny bar magnet. It has the same magnetic field as such a magnet and behaves the same way in external magnetic fields.) When placed in an external magnetic field, a magnetic dipole can be subjected to a torque that tends to align it with the field; if the external field is not uniform, the dipole also can be subjected to a force.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

All matter exhibits magnetic properties to some degree. When placed in an inhomogeneous field, matter is either attracted or repelled in the direction of the gradient of the field. This property is described by the magnetic susceptibility of the matter and depends on the degree of magnetization of the matter in the field. Magnetization depends on the size of the dipole moments of the atoms in a substance and the degree to which the dipole moments are aligned with respect to each other. Certain materials, such as iron, exhibit very strong magnetic properties because of the alignment of the magnetic moments of their atoms within certain small regions called domains. Under normal conditions, the various domains have fields that cancel, but they can be aligned with each other to produce extremely large magnetic fields. Various alloys, like NdFeB (an alloy of neodymium, iron, and boron), keep their domains aligned and are used to make permanent magnets. The strong magnetic field produced by a typical three-millimetre-thick magnet of this material is comparable to an electromagnet made of a copper loop carrying a current of several thousand amperes. In comparison, the current in a typical light bulb is 0.5 ampere. Since aligning the domains of a material produces a magnet, disorganizing the orderly alignment destroys the magnetic properties of the material. Thermal agitation that results from heating a magnet to a high temperature destroys its magnetic properties.

Magnetic fields vary widely in strength. Some representative values are given in the Table.

Typical magnetic fields
inside atomic nuclei1011 T
in superconducting solenoids20 T
in a superconducting coil cyclotron5 T
near a small ceramic magnet0.1 T
Earth's field at the Equator4(10−5) T
in interstellar space2(10−10) T
Quick Facts

Magnetism And The Chemical Bond

key people
related topics

Magnetism

Magnets are objects, which can attract, or pull, on some metals, like iron and steel. If you rub a piece of steel with a strong magnet, the piece of steel will because a magnet too. It has become magnetized. Other metals, like copper or gold, are not attracted to magnets. Magnets can also attract each other, but only if they face in opposite directions. A magnet has two ends called poles; one end is the north pole and the other is the south pole. A north pole will attract a south pole; the magnets pull on each other. But the two north poles will push each other away. We say the magnets repel each other. Magnets seem to act something like positive and negative electric charges. Electricity and magnetism are very closely related.

If the words north and south remind you of anything, the earth is in fact a giant magnet. A compass is a tiny magnet balanced on a point so it can turn freely. The magnet is attracted by the earth’s magnetic north pole and always points in that direction.

A good way to see how the magnet attracts is to do the following experiment. Take a strong bar magnet and putt a piece of pare over it. Then sprinkle some iron filings on the paper. The iron fillings will make a pattern. This pattern shows the magnetic field. The drawing below shows what the magnetic field looks like for a bar magnet (although the lines don’t really exist). Now try it with two magnets. Point their north poles at each other. The iron filings show how the magnetic field looks when the magnets repel. Now turn one magnet in the other direction to see how the magnets attract.